If you took a straw poll of the general public, chances are that few people would have any idea what space weather is, if they’ve ever heard the term at all. In contrast to terrestrial weather, space weather cannot be felt. It doesn’t warm your skin, drench your clothes or blow down your fence. Unlike the floods, droughts and hurricanes that have beset human civilizations since ancient times, it is not an age-old threat. For the first 10,000 years of human civilization, the sun’s flares and CMEs would have had no impact on life at all.

It is only since humanity constructed a planet-scale network of electromagnetic technologies, and subsequently grew to depend on that network for just about everything, that the sun’s activity became a potential hazard. In basic terms, the primary danger of space weather is its capacity to produce an electromagnetic pulse (EMP). Upon making contact with the upper reaches of the atmosphere (the ionosphere), charged particles thrown out by the sun can instigate a “geomagnetic storm”, inducing currents in the Earth’s crust that overwhelm electrical equipment and its infrastructure, resulting in cascading malfunctions, power surges and blackouts. Anything that relies on electricity is vulnerable. Satellites, power grids, aviation, railways, communications, farming, heavy industry, military installations, global trade, financial transactions — the categories of vital systems that could be impacted by a sun-borne EMP are endless and interconnected, affecting every facet of our networked society.

The United Kingdom-based MOSWOC is one of only three institutions worldwide tasked with assessing and forecasting that risk. (The other two are in Boulder, Colorado, and Adelaide, Australia.) Each monitors solar activity 24 hours a day, 365 days a year. Low-severity space weather, like the expulsions Waite was scrutinizing during my visit, occurs all the time. During the solar maximum, MOSWOC usually records around 1,000 such events per year.

But playing at the back of every forecaster’s mind is the hypothetical centennial event, the moment when a sunspot might dispatch a solar storm at a scale that we know has happened historically, but never in our modern, technological age.

The curious paradox at the heart of space forecasting is that the satellites and supercomputers that empower the observations are themselves vectors of vulnerability. The more umbilical our relationship to technology becomes — the more our lives and livelihoods become governed by algorithms and automation — the greater the risk of disaster.